Minimum Safe Distance from Pool Fires

David G. Lilley*
Lilley and Associates, Stillwater, Oklahoma 74074

Radiation heat transfer is a primary reason for fire growth. Experimental data are needed to clarify the ignition potential and time required to ignite a particular target second item. The concepts of critical heat flux and thermal response parameter are important to the material ignition problem. The objective of the present contribution is to clarify these important radiant ignition concepts and to exemplify a range of realistic calculations related to real-world situations.

Introduction

F IRE dynamicists have a need to appreciate technical/scientific understanding of fire development phenomena and its applicability to real-world practical situations. In fire development, radiation heat transfer is a primary reason for fire growth. Uninvolved items become involved in a fire (and fire growth thus proceeds) via conduction, convection, and radiation heat transfer and/or direct flame contact (which is actually a combination of the three modes of heat transfer). Simple rules of thumb are available for 1) the heat release rate Q (kilowatt) of the first burning item, 2) the radiant heat flux \dot{q}'' (kilowatt per square meter) being received on the surface of an item R meters distant, and 3) the level of \dot{q}'' being required for ignition of the as-yet uninvolved subsequent item, typically taken as 10, 20, and 40 kW/m² being required for easy, normal, and difficult to ignite items, respectively.

The initial burning item in a fire is characterized in terms of its heat release rate (heat energy evolving on a per unit time basis) Q changing as the size of the fire changes, as a function of time t (second) after fire ignition. That is, the variation of Q vs t is extremely important in characterizing the rate of growth of a fire, and data are available for many items, (for example, see Refs. 1–3). Furniture calorimeter and cone calorimeter measurements are available. In the special case of liquid hydrocarbon pool fires, a systematic study over a wide range of pool diameters was conducted by Blinov and Khudiakov⁴ and plotted by Hottel⁵ with results available in tables and figures in Ref. 2.

With regard to the ignition of the second target item and its possible ignition from the radiant heat flux arriving on its surface, in actuality, even direct flame contact requires time to pyrolyze the fuel and time to heat the gases produced to their ignition temperature. Of course, a portion of the heat being received on the surface is transported away into the material by conduction and reradiated at the surface. Experimental data are needed to clarify the ignition potential and time required to ignite a particular target second item. The objective of the present contribution is to clarify these important radiant ignition concepts and to exemplify realistic calculations related to real-world situations.

Minimum Safe Distance from Flames

Theory

For many enclosure fires, it is of interest to estimate the radiation transmitted from a burning fuel array to a target fuel positioned some distance from the fire to determine if secondary ignitions are likely. The radiant heat flux received from a flame depends on a number of factors, including flame temperature and thickness, concentration of emitting species, and the geometric relationship between the flame

and the receiver. Although considerable progress is being made toward developing a reliable method for calculating flame radiation, a high degree of accuracy is seldom required in real-world fire engineering problems, such as estimating what level of radiant flux a plant item might receive from a nearby fire so that a water spray system might be designed to keep the item cool. Two approximate methods are now considered.

Considerations of inverse square distance lead to

$$\dot{q}_0^{"} = P/4\pi R_0^2 = x_r \dot{Q}/4\pi R_0^2$$

where

 \dot{q}_0'' = incident radiation on the target, kW/m² R_0 = distance (radius) to target fuel, m

P = total radiative power of the flame, kW $x_r = \text{fraction of total radiated from flame}$

Q = total heat release rate, kJ/s or kW

Usually, the radiative fraction x_r ranges from 20 to 60% (Ref. 2), depending on the fuel type (Table 1). The distance R_0 should be measured from the center of the flame. Experimental measurements indicate that this equation has good accuracy for values of R_0/R greater than 4, where R is the flame radius. The point-source nature of the heat from the flame is then a reasonable assumption.

In a second approximate method, the flame is approximated as a vertical rectangle and the radiant flux is calculated using view factor information. This takes into account the large size of the flame, with angles and orientations being accounted for appropriately. Flux levels close to the flame are then more accurately handled.^{6,7}

Sample Calculations

Useful related calculations are now given in Table 2. The heat flux (in kilowatt per square meter) landing on a target is given as a function of total heat release rate \dot{Q} (in megawatt) and distance away (in meters). A radiative fraction x_r of 0.4 is used in these calculations, typical of liquid hydrocarbon pool fires.

Radiant Ignition

Theory

In actuality, ignition is not immediate when the particular level of incident radiant heat flux reaches 10, 20, or 40 kW/m², respectively, for easy, normal, and difficult to ignite items. These values are used as simple rules of thumb in applied calculations (see Lilley⁸ and Karlsson and Quintiere⁹). Fundamental ignition principles, for example, outlined in Ref. 2, suggest that for fire initiation a material has to be heated above its critical heat flux CHF value (CHF value is related to the fire point). The CHF value can be determined in one of several heat release rate apparatuses, including the so-called flammability apparatus and cone calorimeter. The design features, test conditions, and types of measurements vary as described in

Presented as Paper 99-0342 at the AIAA 37th Aerospace Sciences Meeting and Exhibit, Reno, NV, 11-14 January 1999; received 8 August 1999; revision received 1 March 2000; accepted for publication 2 March 2000. Copyright © 2000 by David G. Lilley. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

^{*}Professor, Route 1 Box 151. Fellow AIAA.

650 LILLEY

Table 1 Radiation fraction of combustion energy for hydrocarbon pool fires

Hydrocarbon	Pool size, m	% Radiative output/ combustion output
Methanol	1.2	17.0
LNG on land	18.0	16.4
	0.4 - 3.05	15.0-34.0
	1.8-6.1	20.0-25.0
	20.0	36.0
LNG on water	8.5-15.0	12.0-31.0a
LPG on land	20.0	7.0
Butane	0.3 - 0.76	19.9-26.9
Gasoline	1.22-3.05	40.0-13.0 ^a
	1.0 - 10.0	$60.1-10.0^{a}$
Benzene	1.22	36.0-38.0
Hexane		40
Ethylene		38

^aIn these cases, the smaller diameter fires were associated with higher radiative ouputs.

Table 2 Heat flux $\dot{q}^{\prime\prime}$ (kW/m²) on target

Source total heat release	Distance of target from source, m				
\dot{Q} , MW	1	2	5	10	
1	31.8	7.96	1.27	0.32	
5	159.0	39.80	6.37	1.59	
10	318.0	79.60	12.70	3.18	

Ref. 2. Typically, the CHF values are determined by exposing the horizontal sample (for example, about 100 mm diameter or about $100 \times 100 \text{ mm}^2$ and up to about 100 mm in thickness with blackened surface in the flammability apparatus) to various external heat flux values until a value is found at which there is no ignition for about 15 min.

It was found that, as the surface is exposed to heat flux, initially most of the heat is transferred to the interior of the material. The ignition principles suggest that the rate with which heat is transferred depends on the ignition temperature $T_{\rm ig}$, ambient temperature T_a , material thermal conductivity k, material specific heat c_p , and the material density ρ . The combined effects are expressed by a parameter defined at the thermal response parameter (TRP) of the material

$$TRP = \Delta T_{ig} \sqrt{k\rho c_p}$$

where $\Delta T_{\rm ig} (= T_{\rm ig} - T_a)$ is the ignition temperature above ambient in degree Kelvin, k is in kilowatt per meter Kelvin, ρ is in kilogram per cubic meter, c_p is in kilojoule per kilogram degree Kelvin, and TRP is in kilowatt second^{1/2} per square meter. TRP is a very useful parameter for engineering calculations to assess resistance of ignition and fire propagation in as-yet uninvolved items.

The ignition principles suggest that, for thermally thick materials, the inverse of the square root of time to ignition is expected to be a linear function of the difference between the external heat flux and the CHF value

$$\sqrt{1/t_{\rm ig}} = \frac{\sqrt{4/\pi}(\dot{q}_e'' - \text{CHF})}{\text{TRP}}$$

where t_{ig} (s) is time to ignition \dot{q}_e'' is the external heat flux, and CHF is in kilowatt per square meter. Most commonly used materials behave as thermally thick materials and satisfy this equation. Tables 3–5 give the ignition times deduced from this equation, using CHF and TRP data from Table 6.

The TRP for a surface that is not blackened is higher than the value for a blackened surface. For example, for nonblackened and blackened surfaces of polymethylmethacrylate PMMA, TRP = 383 and 274 kW-s^{1/2}/m², respectively, from the flammability apparatus. The value for the TRP for a blackened surface of PMMA is close to the value calculated from the known T_{ig} , k, ρ , and c_p values for

Table 3 Ignition time t_{ig} (seconds) for CHF = 10 kW/m^2

External heat flux \dot{q}_e'' , kW/m ²	TRP, kW-s $^{\frac{1}{2}}$ /m ²					
	100	200	400	800		
15	314.2	1,256.6	5,026.5	20,106.2		
20	78.5	314.2	1,256.6	5,026.5		
30	19.6	78.5	314.2	1,256.6		
40	8.7	34.9	139.6	558.5		
50	4.9	19.6	78.5	314.2		
100	1.0	3.9	15.5	62.1		
150	0.4	1.6	6.4	25.6		

Table 4 Ignition time t_{ig} (seconds) for CHF = 20 kW/m²

External heat	TRP, kW-s $\frac{1}{2}$ /m ²					
flux \dot{q}_e'' , kW/m ²	100	200	400	800		
25	314.2	1,256.6	5,026.5	20,106.2		
30	78.5	314.2	1,256.6	5,026.5		
40	19.6	78.5	314.2	1,256.6		
50	8.7	34.9	139.6	558.5		
60	4.9	19.6	78.5	314.2		
100	1.2	4.9	19.6	78.5		
150	0.5	1.9	7.4	29.7		

Table 5 Ignition time t_{ig} (seconds) for CHF = 40 kW/m^2

External heat	TRP, kW-s $\frac{1}{2}$ /m ²					
flux \dot{q}_e'' , kW/m ²	100	200	400	800		
45	314.2	1,256.6	5,026.5	20,106.2		
50	78.5	314.2	1,256.6	5,026.5		
60	19.6	78.5	314.2	1,256.6		
70	8.7	34.9	139.6	558.5		
80	4.9	19.6	78.5	314.2		
100	2.2	8.7	34.9	139.6		
150	0.6	2.6	10.4	41.5		

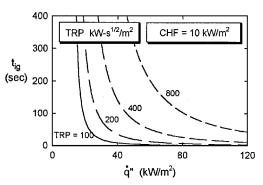


Fig. 1 Ignition time for materials with CHF = 10 kW/m^2 .

PMMA. The TRP depends on the chemical as well as the physical properties of materials, such as the chemical structure, fire retardants, thickness, etc. For example, the TRP increases with sample thickness and increases in the amount of passive fire protection agent used, such as provided by a surface coating to a heavy corrugated paper sheet.

The CHF and the TRP values for materials derived from the ignition data measured by Scudamore et al. ¹⁰ are listed in Table 6. In the cone calorimeter, the surface was not blackened, and thus the values of the TRP may be somewhat higher than expected from the $T_{\rm ig}$, k, ρ , and c_p values.

Sample Calculations

Computations with the preceding equations may be done for a variety of CHFs and TRPs. Figures 1–3 show the effect of CHF and

LILLEY 651

Table 6 CHF and TRP of materials

	CHE 1-W/2	TRP, kV	V-s ¹ /m ²		CHE 1-W/2	TRP, kW	-s ¹ /m ²
	CHF, kW/m ² , flammability	Flammability	Cone		CHF, kW/m ² , flammability	Flammability	Cone
Materials	apparatus	apparatus	calorimeter	Materials	apparatus	apparatus	calorimeter
	Natural materials			Epoxy 1-fiberglass	10	420	
Flour	10	218		Epoxy 2-fiberglass	15	540	
Sugar	10	255		Epoxy 3-fiberglass	15	500	
Tissue paper	10	95		Epoxy 4-fiberglass	10	388	
Newspaper Wood (red oak)	10 10	108 134		Epoxy resin-69% fiberglass Epoxy-graphite 1		481	688
Wood (Douglas fir)	10	138		Epoxy-graphite 1/ Epoxy-graphite 1/ceramic		2273	
Corrugated paper (light)	10	152		coating (CC)		2273	
Corrugated paper (heavy)				Epoxy-graphite 1/intumescent		962	
No coating	10	189		coating (IC)			
Coating (10% by weight)	15	435		Epoxy-graphite 1/IC-CC		1786	
Coating (15% by weight)	15	526		Polyvinyl ester 1–69% fiberglass		201	444
Coating (20% by weight) Wood (hemlock)	15	714	175	Polyvinyl ester 2-fiberglass Polyvinyl ester 2-fiberglass/CC		281 676	
Wool 100%			252	Polyvinyl ester 2-fiberglass/IC		1471	
Wood (Douglas fir/fire	10	251		Polyvinyl ester 2-fiberglass/IC-CC		1923	
retardant, FR)				Graphite composite	40	400	
	Synthetic materials			Phenolic fiberglass (thin sheet)	33	105	172
Epoxy resin			457	Phenolic fiberglass (thick sheet)	20	610	
Polystyrene (PS)	13	162		Phenolic-graphite 1	20	333	
Acrylic fiber 100%			180	Phenolic-graphite 2	20	185	400 258
Polypropylene (PP)	15	193		Phenolic kevlar (thin sheet) Phenolic kevlar (thick sheet)	15	403	236
PP/FR panel	15	315	291	Phenolic-graphite 1/CC		807	
Styrene-butadiene (SB)	10	198		Phenolic-graphite 1/IC		1563	
Crosslinked polyethylenes (XLPE)	15	224-301		= -	eiling insulation ma	torials otc)	
Polyvinylester	13		263	Polyurethane foams	13-40	55-221	
Polyoxymethylene		269		Polystyrene foams	10-15	111-317	
Nylon	15	270		Phenolic	20	610	
Polyamide-6			379	Phenolic laminate-45% glass			683
Polymethylmethacrylate	11	274		Latex foams	16	113-172	
(PMMA)			20.6	Materials with Fiber	web, Netlike and mi	ıltiplex structures	
Isophthalic polyester			296	Polypropylenes	8-15	108-417	
Acrylonitrile-butadiene-styrene (ABS)	· —		317	Polyester-polypropylene	10	139	
Polyethylene (high density)	15	321	364	Wood pulp-polypropylene	8	90	
(PE)	15	321	50.	Polyester	8-18	94-383	
PE/nonhalogenated fire	15	652-705		Rayon Polyester-rayon	14-17 13-17	161-227 119-286	
retardants				Wool-nylon	15	293	
Polyvinyl ester panels	13-15	440-700		Nylon	15	264	
Modified acrylic (FR)			526	Cellulose	13	159	
Polycarbonate	15 16	331 420		Cellulose-polyester	13-16	149-217	
Polycarbonate panel				Elec	trical cables: powe	r	
	Halogenated materia			PVC/PVC	13-25	156-341	
Isoprene Polyvinylchloride (PVC)	10 10	174 194		PE/PVC	15	221-244	
Plasticized PVC, LOI = 0.20		194	285	PVC/PE	15	263	
Plasticized PVC, LOI = 0.25			401	Silicone/PVC	19	212	
Plasticized PVC, LOI = 0.30			397	Silicone/cross linked	25-30	435-457	
Plasticized PVC, LOI = 0.35			345	polyolefin (XLPO)	20.22	160.560	
Rigid PVC, LOI = 0.50			388	EPR (ethylene-propylene rubber/EPR)	20–23	467–567	
Rigid PVC1	15	406		XLPE/XLPE	20-25	273-386	
Rigid PVC2 PVC panel	15 17	418 321		XLPE/EVA (ethyl-vinyl acetate)	12-22	442-503	
PVC panel PVC fabric	26	217		XLPE/Neoprene	15	291	
PVC sheets	15	446-590		XLPQ/XLPO	16-25	461-535	
Ethylene tetrafluoroethylene	27	356		XLPO. PVF (polyvinylidine	14-17	413-639	
(ETFE), Tefzel TM				fluoride)/XLPQ		202 4:5	
Fluorinated ethylene-propylene	38	682		EpR/Chlorosulfonated PE	14-19 14-28	283-416	
(FEP), Teflon TM		200		EPR/FR		289-448	
Teflon fabric	50	299			l cables: communic		
Teflon coated on metal	20	488		PVC/PVC	15	131	
	and fiberglass-reinfor	ced materials	201	PE/PVC XLPE/XLPO	20 20	183 461-535	
Polyether ether ketone-30%			301	Si/XLPC	20	457	
fiberglass lsophthalic polyester-77%	_	_	426	EPR-FR	19	295	
fiberglass			740	Chlorinated PE	12	217	
Polyethersulfone-30%			256	ETFE/EVA	22	454	
fiberglass			- *	PVC/PVF	30	264	
Polyester 1-fiberglass			430	EED/EED 26 620 652			
Polyester 2-fiberglass	10	275			Conveyor belts		
Polyester 3-fiberglass	10	382		Styrene-butadiene rubber	10-15	336-429	
Polyester 4-fiberglass	15	406		(SBR)			
Polyester 5-fiberglass Epoxy Keylar (thin sheet)	10	338	120	Chioroprene rubber (CR)	20	760	
Epoxy Kevlar (thin sheet) Epoxy fiberglass (thin sheet)	10	156	120 198	CR/SBR PVC	15 15–20	400 343-640	
Epoxy graphite	15	395		1 10	13-20	J+J-U4U	
1 7 7 6 P							

652 LILLEY

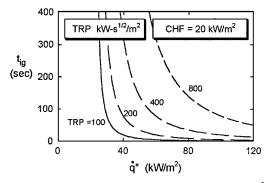


Fig. 2 Ignition time for materials with CHF = 20 kW/m^2 .

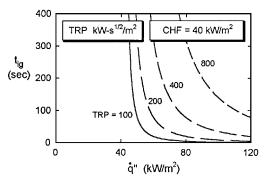


Fig. 3 Ignition time for materials with CHF = 40 kW/m^2 .

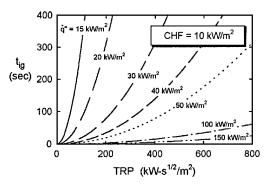


Fig. 4 Ignition time for materials with CHF = 10 kW/m^2 .

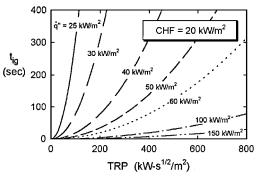


Fig. 5 Ignition time for materials with CHF = 20 kW/m^2 .

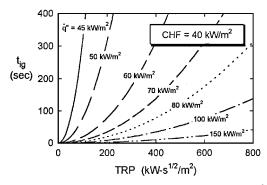


Fig. 6 Ignition time for materials with CHF = 40 kW/m^2 .

TRP on the time required to reach ignition $t_{\rm ig}$ of the material, for different incident heat fluxes \dot{q}'' . As expected, the time to ignition decreases substantially as the incident heat flux becomes greater than the CHF. Figures 4–6 give similar data in a slightly different form. Tables 3–5 give the same results of a range of calculations involving CHF, TRP, and \dot{q}'' . The actual values of CHF and TRP used here are typical of many materials of practical interest.

Conclusions

A fire may spread because of radiant heat flux levels becoming high enough for ignition to take place. Critical heat flux (CHF) and thermal response parameter (TRP) are needed to clarify the thermal ignition potential of any material. Typical values were given for an extensive range of materials, and corresponding ignition times were presented for a range of realistic situations.

References

¹Babrauskas, V., and Grayson, S. J. (eds.), *Heat Release in Fires*, Elsevier Applied Science, New York, 1992.

²DiNenno, P. J. (ed.), *Handbook of Fire Protection Engineering*, 2nd ed., National Fire Protection Association and Society of Fire Protection Engineers. Boston, 1995.

³Bukowski, R., "The HAZARD-1 Computer Code Package for Fire Hazard Assessment," National Inst. of Standards and Technology, Gaithersburg, MD, 1989.

⁴Blinov, V. I., and Khudiakov, G. N. "Laws Governing Diffusive Burning," *Doklady Academiia Nauk SSSR*, 1957, pp. 1094–1098.

⁵Hottel, H. C. "Certain Laws Governing Difusive Burning of Liquids," *Fire Research Abstracts and Reviews*, Vol. 1, 1959, p. 41.

⁶Portier, R. W., Peacock, R. D., and Reneke, P. A., "FASTLite: Engineering Tools for Estimating Fire Growth and Smopke Transport," National Inst. of Standards and Technology, Special Publ. 899, Gaithersburg, MD, April 1996; also update to Ver. 1.0b, Feb. 1997.

⁷Drysdale, D., An Introduction to Fire Dynamics, Wiley, Chichester, England, U.K., 1985.

⁸Lilley, D. G., *Fire Dynamics*, Short Course, Lilley & Associates Course Notes and Sample Problems, Stillwater, OK, 1995.

⁹Karlsson, B., and Quintiere, J. G., Enclosure Fire Dynamics, CRC Press, Boca Raton, FL, 2000.

¹⁰Scudamore, M. J., Briggs, P. J., and Prager, F. H., "Cone Calorimetry—A Review of Tests Carried Out on Plastics for the Association of Plastics Manufacturers in Europe," *Fire and Materials*, Vol. 15, 1991, pp. 65–84